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pokential. Flow abo t BoAtes of Revolution

1
and Symmetric TNo-Dimensional Forms

by

L. Landweber

AbstracL

A procedure for computing the potential flow about bodies of

revolution and symmetric two-dimensional fonas in arbitrary states of

motion is presented. Solution for general motion is obtained by super-

imposing the solutions of the boundary-value problems for the different

4 mcomponents. Technique consists of formulating each problem as a

* Fredholm integral equation of the first kind which can be closely

approximated, by means of a quadrature formula of moderate order, by

a set of linear equations with a matrix having a strong principal di-

agonal, suitable for solution either by elimination or iteration. For

the general motion of bodies of revolution, three such integral equa-

tions need to be solved; Tor the two-dimensional forms, solutions for

four potential-flow problems are required, two of which are obtained

from integral equations, the remaining two being obtaine from the in-

tegral equation solution for long"-tu!ialb' cc.for

Method has been progmmed for the 131 650, an autcatic

cceiputer of moderate speed and capacity. The separate program for

the body of revolution and two-dimensional forms are presented and the

'Work sponsored by the David Taylor Model Basin under the BuShips
Hydroechanies Research program, and by the Office of Naval Research
under Contract Nonr-1611(Ol).
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application of computer-obtained results is illustrated with several

exeamples. '.A considerably shortened and. somnvhAt less accurate.procedure,.

suggested for use 'hdn an automatic computer is not available, is also

- ",illustrated in detail and compared with computer-obtained results.

Introduction .

A'-procedure -for corhputlng the potential flow about bodies of""

- • revolution which are simultaneously translating at some angle-to the axis

, 1 of symetry and rotating abofit a transverse axis "will be presented. For

a given body the method consists essentially of solving for three separ-

ate velocity potentials, linear combinations of which y~ela the velocity

potential ±or an arbitrary state of motion.

The numerical procedure for each of the aforementioned poten-

tial flow problems -consists of comptin: a matrix of .coefficients for a

set of -linear equa~tions, the- solution of .aich ives the value 6f the

potential or velocity at a finite number of points along the body.. The'

labor of setting up and solving three sets of simultaneous equations is

.reduced by the fact that the matr.ces of the coefficients bf the linear

a equations are identical for rotation, and translation in a direction

perpendicular to the axis of eyrmetry and that the operations performed

in obtaining the matrix for translatory motion along the axis of symntry

can be utilized in obtaiiing the other sets of linear equations.

A similar procedure can be formulated for symetric two-

dimensional forms, simultaneously" translating at an angle of attack and

rotating about an axis perpendicular to the section. In this case the

I.
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general pi'ob.le n a't na lyzed inito four i'undamental onc , viz, flovo

correspondin to body motions pamllel and perpendicular to the plane

of symmetry, rotation, and circulation. By taking advantage of the

theory of confornal mapping, the solutions for two of these problems

can be expressed in terms of a third, so that for only two of the cues

is it necessary to execute the aforementioned numerical operations.

It is well known that the Neumann problem of potential t1 eory,

as the present potential-flow problem my be classified, cm be fozvA-

lated In term of Fredholu integral equations of the second kind

1 3,. Ingeneral thee integralt

that their anltcation to obtain numerical solutions bo resulted in

ccmXjiex and tediou procedures. Leos familiar is the fact that these

problem can also be expressed in terms of Fredholn integral equations

of the first kind [G), with much simpler kernels. P soibly the fact

that integral equations of the second kind possess unique solutions#

while those of the first kind have solutions only if certain a4ditional

conditions are satisfied, has been a strong dterrent to the applies-

tion of the lattei type.

The practicability oifii*ii g integral eq tions of the first

-A S di ,e eU-.i 1w4 author in a prewious laper (7). It me

,show tbat.eve In-came here the Integral qaatioa does not Voemss

a solution, it Is poeslbie to satisfy the equation approximately. A

2 ftebers in brackets designate references at end of Vaper.

A
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goo Cexmple ofti eis ' arw3I- mafp ao b ~n" t

cyiiwietLfow about a. bo4~ oC re lixtion' b$ S3C tv AG ftr :EXt#dr'1 Aeq8-

tion of the first kind in Vhih the,w ', _ai Tnction Is the S trenath 6f

! an axial distribution of sources. A DO+ -,a of tolving integral equa-

of the first kind by iteration [ ^,I has the additional advantage

that the error diminishes in a least-square sense, although the disaeree-

able -possibility eists that beyond some nth iteration the error iay

accumulate and increase at'some point, even as the integral of the square
of the error continues to d4minish. evirheless one can obtairn a /se-

ful approximation'evcn in this case, since the errors are observed at

each step-and the calculations can cease Ahen the error exceeds an ac-

ceptable value at any point.

When an integral equation of the first kind has a solution,

the theciy [7. Indicates that it. is possi'ole to find functions which

-. satisfy the. equation uniformly as closely as one desires. These unc-

tions wil ,converge to the desired function, however, only if .certain-

add4tional conditions .are satified. Unfort'w'ately the nature of these

additional conditions is such that it is difficultto verif "in a pra6-

tical case uhether or not they are satisfied. "

On the favorable side is the fact that these integral equa-

tions are considerably simpler than the ,corresponding ones of the second
kind for the problems with which we 'shull be concered. If these prob-

lcms are programmed for solution ,by a digital computer, the former can

be processed with a computer of mderate speed and capacitybut the,

latter requires a computer of much greater capacity. With some sacri-

I-A
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rica in accuracy, it in practicable to solve theoc potential-flow prob-

lens with the aid of a dcsk calculator If the problem is formulated arn

an integral equation of the first kind, but not if of the second hind.

Fxperience with a large nuAber or bodies of revolution indi-

cates that, for vell-rounded bodies, sufficiontly accurate solutions

can be obtained without difficulty by means of integral cquations of

the first kind. For bodies with sudden changes in slope and curvature,

or with local bump., the method of integral equations of the second

kind has been remarkably successful [5].

The method employed in the prescent paper is that of the inte-

gral eqtion of the first kind. Five such equatiorns will be derived,

rme for each of the potential flow problems mentioned earlier. Methods

4 of solving these equations will be described, and illustrated by several

exaMleg.

1 Nomenclature

ai mtrix for calculating derivative of a function

b, bi semi-minor axis o£ ellipse or ellipsoid, bi - b(x,)

e, e eccentricity oV ellipse or ellipsoid, ei w e(xj)

f(x), (x), h(x), functions, fi - ix), gi " g(xi), hi - h(xi)
fi, Gi, hi

Vx. . Sutseessive ,ro, i tiois tO .x); -, " n%()

g'(x), hl(x) darivatives of a(x) and h(x), Gl gl(xi), hi - h'(xi)

hij" ±~n corrected mtrices

k(, X), -it kernel of integral equation, k k(xi, xj)

100-- x) k" auxiliary kernel, 1, , -k(xi, x3 )
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:tz(j, X), k1C auxiliary hcriicl for ellipse or ellipoid

1 unit vector alone outword norml to ourface

p presmre an body relative to presoure at ln it ity

r(x). r radial distance from axis of body of revolution to
surface, r. - r(x,)

rz radial distance fro axis for auxiliary eflipaoid

ro  radius of circle into vhich profile is mapped

s position vector of point-on surface of bo y of
revolution relative to oriin

s v Marc &mtalong bo~p iwuwxed clockwis efrom
x - -1 for body of revolution, counterclockwise
from x -'+i zor tvo-dissimaiiol form

uS v v velocity camoento at a point of the fluid

u factor of tUagmtial velocity omponent alo g
body for axial flow

U2 5 , UU factors or tangential velocity ooqpmt along

velout vesior at s point of the flid

X0 ys x rege ark alte coordintes
0

Xis Xj  mI oftsre pa yn mial, o MAW N

y(X) Yjordinates of two-Cdi omluu profile, 3?i i - l

Y110, t  orites -of auKI. i m e114.pse a, y (x xj)

A0  ame at tgu.4iliisaftl 11"

A1 , X kinm i" fw eull o ds

'ialwix for calclAtIns intearals of a function

In(x exrot f~iction oorre spondins tog %(X)



i(), nL(')' l'ni k rnel integrala, Ii  I 1(xi), ctc.J(I), Jni(I), Jil jni
P ermi-perimeter of profile or meridian section

PN(x) Legendre polynomial of order I

pj~j' q, p~r)first, sccondnd~ rth derivatives of ,X

Q(M), %S G(x)k1(I, x)&; Q1 - x )

R distance from (1, 0) to point on body

R i weighting factors for Gauss quadrature formula

S1' Sni' 8MR j jp etc.

Ti, Tni, Tl ZR(xj - xi)kij, etc.

velocity vector of origin of coordinates attached

to body

U1, U2 , U. ccnponents of 0 for axisymuetric body

U us, U6  components of angular velocity of body for
axwoymmetric body

resu l.tl.)t velocity on body

UL tangential velocity component along body of
revolution In cxia. flow or two-dimensional
form in longitudinal flow

Us 2 tangential velocity component *W transverse
flow along two-dimensional form or in meridian
plane along a body of revolution

U tanetial velocity ccmonat for transverse
flow normal to meridian plam along a body of
revolution

U, V velocity components of origin attached to two-
d4 ional form

t=ential velocity comonent along two-dimensio;L3VS form due to circu)ati
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U a, UZc, Uvc velocities tanGent to circle due, rcspectively, to a
velocity of -1 in x-direction, -I in y-dircction, and
unit circulation.

s velocity vector of a point on surface of body

component of V along outward normal to body

angle of yaw or attack

<arctan dr/dx or arctan dy/dx

Kronecker delta, a 0 if i J, a 1 if i j

complex variable, u ='+ iij

Imaginary prt of

a angle of cylindrical coordinates (x, r, O) for body
of revolution; angle from x-axis to point on circle
in conformal mapping

components of velocity in circle plane

alternative designation for x in integral eqpation ,
also real pert of

P mass density of fluid

velocity potential corresponding to unit value of U11

an auxiliary potential function

factors of and

fators o and
V velocity potential corresponding to unit circulation

,strea function con~uate to #'

~angular velocity of two-dimnsional form

angular velocity vector of axirjmtric body



r c rculation

total velocity potential

ForAuation of Problem for Bodies of Revolution

It will be supposed that the x-axis coincides with that of the

body of revolution, that the body extends along its axis from x - -l to

x - +1, and that the x, y, z axes, which are fixed in the body, form a

rectangular right-handed coordinate syst=, as shown in Figure 1. e

equation of the body surface is expressible in the form

where r(x) is a prescribed function, and hence the outvardly directed

norma vector i of the surface has the components

A44%.y, g =q It~r AA Sdfr (2)

where
4A

Let U denote the velocity vector of the orlgin, with component

U1, e2, and U5, and 9 the angular velocity vector of the body, vith

components 4, U50 U6o 4 V. C# S o W a

the body is

U, X

wheres is the position vector of a point on the srfaae, and the coppon-

ent of the velocity along the normal is
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Hence the oidrycondition-for an impn-rcable boundazty,

yields, by con ar~Ln (3),and (5) 'and equaiing the coefficients of the

1 1 corresponding~ velocity components,

- I ~ ~ -~'=--.-.'r 0 ~t c~r, * O 4 *

S3ince, the body is moving through- otheri~ise undisturbed fluid, ve also

p-el
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baviz the conditions

( 0) 0 (7)

Derivation of Intcgral Equations for Bodics of Recvolution.
Let be another function harmonic in the region exterio

• ."-if s = -.0: !±* - (a)

.. ~ treio eteio

v• re "he double integrals are 'tkeh over the setrface of the body. It

will be-supposed that 4e bdiecteh-ot the forms-

.j i " * J, -'k> #' i(W,,o , 0-= 0}

S".. . A:. Axial lbtion

For 4' e may assutnle the doublet potential

* ,'= k . R= L(z=-2+ I'z "m

which has the corrspbnding Stokes &tream function

___In terms of t he cylindrical coordinates (x, r, 0), Equation n nOw

becomes

ii

I- 0a,



Sre a is arc' length along a meridian section measured clockwise from

-the point x =-41 and 2P is the perimeter of the section. But, from the

relations betweea an axisymmetric potential and its Stokes stream

function., we have

and hence, Integrating by parts, we obtain1. ' I ." . "JM . . . J " p.

. Alo let Us be t velocity along the body when the flow- is -made stepdy

'b [uprpoJn a unif6rrn stream of (init velocity. -in 'the. neLgt~ve x-
,: ~direction. Then " ,

M .V . , - •3

Hence, subxtituttng for /A. 'in the .previous Integral, we obtain
z~~rom (12)" "

I.A
• or •

6P

But since "

the differential in the lait integral is exact and, as is easily veri-

fled,

I-.

*. < .
p.,
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fR3  d

* ! .ence,. putting ds = dx vsec r, e obtain

",. = 2 (15)

F _I.a Fre4holm integral equation of the first kin& for the unknown function

,. ~ I i() .

B. Transverse Motion
• ,"-The velocity potential f2 satisfies Laplace's equation

• IlBy the method of separation of variables it is found tat may lie

, taken of the form.""

; / ~where O tsfe.the eqvtion" "

I .) I Or)• , , " " Z 2 . + . . .. - o '

which shows that r is a'Stokes stream function.

~ofi suppose that a uniform stream of unit velocity in the

negative y-direction is superimposed on the flow. The flow becomes

'4steady, ana the velocity at the body is tangent to it, .with the

velocity components in the directions of increasing s and 9

4 i

I
• lj ,
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}.'For ve mary assume the-'doublet potentil"

i :-" '" * - - -" -

in ccrdacevit (). 1hn ppyin te boundarycondition (6),

" • -" ~quation" C ) yields•. ""

in~i

I or, substitutigy for r from (18), we obtaln

3 R3ii., #lR3It

J ' S  4.

." -L , " - " - -. " 4.&o bI"' "or : r (1) w oa
-~N I

'33

N,1 3 Z-k ~



or, more exlicitly, from Eq. (20),

II
SFredholm integral equation of the first kind for the unknown imcon

~Once (2.l)" Is solved for h Ofrom (17) and (18) the velocity

potential and the 'var-ious velocity- components are

~ (22)
.0 :€ " ,-L, . 9)

in terms of U and du@ dx. The latter can be obtained from u by

- numerical or graphical differentiation.-

"' " .The corresponding expressofis for notion of the body zIn the.j Jz-direction can be derived from (.22),by replacing 9 by 9 - 17/'2; viz

• * . *._O 4. , Jk

F. )

Fd if
-L LO f 6(3



. . Rotationl tion .

asswaad of the for:

(2)Let us assume for the doublet potential

in accordaice ith (9).- Then, E ation (8) yields

dt JO A: 2 z r

or, from (20),

3"A -t z

j a Fredholm integral equation of the first kind for •For elongated

bodies a preferable form of the equation is obtained from (25) by.

wv -iting -7

- --z - " " .
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But from the identity

ire o'btain. ..

Ifenee,, from (27) ajid (28), re obtain

R'- 3 A,'+ (29)

th e d~sirediintcgraj. equation,. in, which *41tt xc is the unknown function.

Mhe velocity potential and the velocity components are then given by

the cxprei'sions

IThe coresonin bxrsin o~rtt te body about the z-*~

axis ca0edrvdfo 30 ysbttt .:.Xfr9 i

Formulation of Problem for Symmetric Two-Dimensional. Forms

Only the case of a two-dimensional form symmetric with respect



to its chord will be considered. Ile x-axis will be taken to coincide

vith the chord and the y-axis perpendiculat to it at its midpoint,

with the chord extending. from x =-I to x'x +1. The equation of~the

A { upi4er half of the profile will be expressed in the form y= yx), .

:1 where y(x) 'is. a prescribed function. .Then the outwardly directed

" ,normal to the contour has the direction corines (- sini r,,codr)

where ) =.arctan dy/dx. Also let a denote arc length along the upper

'I" half of the pr6file, measured counterclockwise3 from .the paint x +1,

and .P Pthe !rimete- of the profi'le. Then .

K
DA. bit

Pee Figure 2.

_ Let U, V denote-thevelocity componenta of the origin-of the

body and Wa the angtlar velocity about an a:ds perpendiculat to the

seeton. It will, also be assumed that there is a circulation I about

- the body. Then the components of the velocity of a point on the contour

are U - W y and V + wx, and the component.O'f the velocity along the

normal is

V - U. A Y+Vr V . -. W ( o ,r + 44 .n.) (32)
-~ I

3Note that this- convention is opposit6 to that used previously for the
body of revolution.

...
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The velr9ity-pottntlal is expreisible in the form

'! ;. ., Then. the-,oundary condition', -,

yields the separate boundary conditins

Derivation of Integral Equations for Two-Dimensional Forms [

. It is proposed to aolve these potential flow problems by

{ jjdetermining 411 and from Fredholm initegral'equations of the first

kind, and then obtaining Ol ad .* from. - .by meads 6f some conforma

mapping.theory.

** "A. Longitudinal Motion

A Mot
As before, we begin with-Green's reciprocal theorem, but in-

{ its two-dmensional form,

. " -

Swhere is another fuMction -harmonic in the i'eglon exterior to the

contour and vanishing at infinity. When 4) = we may assume for , -

and its corredponding stream function 1,Ithe doublet lanctions

N 7

1, 9

LI - -



IM, -20

L "A.

i . - - .- .7)

T_- Ten, substituting for /W from (35j, applying the Cauchy-Riermna

L equation

and Integrating Ue left member of -(36) by parts, e "obtain

Now let U denote the velocity-along the body when the flow is made

11 : eieaay by superimpoolng.a uniforra otteam-of unit velocity in the

I _
negative-x-dection. Mhen',

. .-and hence we obtain fram the previous equation

tit o 9 R2

- =0

3 -I'1 or

11Z (38)

a Fredholm integral equation of the first kind for-U

~I 1

1J 11:
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B. Rottoral Motion"

'We take 4'and assume for of in (36) the doublet function

and its corresponding stream function 4'

SR2' (39)

-* Then, appling the boundary condition (3) and the relation

v~-e obtain

~or

'for elon~ate, forms a more sutable eqution is obtaned from

itsr .R - ()
()4t)

But

ILI
4t jJ;L RIR

R4 It

-o _0
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Applyinc this result, (41) becomes

the desired. integral equation, with ( I 1). as the unknbwn fuiction.

' Solutions for Transverse Motion and Circulation - Kutta Condition .1

o the given profile can be mapped into a circle of radius r °

Sabout the origin by-means of the transformation

i.= + (-4. . . . 3¢ )'

i Uhere z x + iy and +. are complex variables in the planes'

of the profile and the circle, respectively. Then, denoting the corn-

p6nents of the veldeity in thej ,-plane by (t, ), the relation

I between, the complex velocities in the z- andS-planes is

L. J Let us again consider the case or the body at rest in a

I uniforti stream of unit velocity in the negative x-direction. Then

z *since z = and dj/dt = 1 at infinity, it is seen from (44) that

the flow in the I -plane about the circle is also due to a uniform

- stream of unit velocity in the negative f-kirection. Henco the
tangential velocity on the circle is r

Lj to z A.4 e (45)"ti

where 0 is the polar angle measured counterclockwise from the k-axis.

4]

~J I
-0



Ri ence, taking the absolute values of the membcrb of (44), we obtain

U, = 2o , A A;7)

' .J " " q o ] u ~sd -_ ,[ ir.4x

S0

- Thus,(4? give and 0 as functions of x.

..... low coriider the case when the body is at rest in a uniform

stream or unit velocitky ih the, negative y-d~rection. The tan~ential

• elocity on tihe circle is Uc .-2 coo 0, and (44) and (46) nowie for the tangential velocity on the profil

•P

0JiX

t 
---

SThuts l ons given and 48 as -.nctions'x.

flow resuldthecs wheno bu the body i at re ino uniform

streuao n it elyt simple.nerThe -dirc tion. oT he circle isa

veas nt, otattetneta elocity aou the circle is U2 o ,ad(-)ad(6 o
~~~~~given fyor r c 1. enefrm()an(4, the tangentvloitao t

veloityl onah profile

2 AOL WZO = d U IS Ct 0",8

Thusthesoltio fortra~svrse-flo isgivn-b (47 an (4) i

term of hatfoillongtudnal low

The resul when th floi abu t.he boyik oui



For -profil.es with a shiarp trailing edge the eirculation P

can be determined from the Kutta condition that the resultant velocity

at the trailing edge due to transverse flow and circulation should be

- finit"e. From'(48)-and (49) the resultant velocity corresponding to

@. ,i I" is seen to be
* .;.j -\

VU + r Ovs- z( ZVno+.r"

.ut at a shrp trailing edge,* dQ/ds is infinite and hence., in order

to sdtisy the Kutta condition, we rmnst, have

A; -Y 00

Hence, from (47), ( 8) and (49), if such a profile is in translational

motion, the restl-tant flow velocity UR on the 'surface relative to

tle bodyis

u,. =uu, + VU? r puY = V, V co - a o + c~roo)]

= U u-v'/ + c -

U U V= U) +V U A- ,

j in which the + sign -refers to the lower half of the profile and the

- sign to the upper half.
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Procedures for Solving Integral Equations

We are concerned with solving integral equations of the form=

In which k( , x) and f( I") are given and g x) is the ruinon function.

If the integral in (51) can be expressed as a finite sum by means of

some quadrature formula, it would 'assme the form

V k (52)L ;where the R are weighting factors, gj g(xj), k j-k(x., xS), and

f = f(xi)". Thia.would reduce the probl6m to that of solving a set of

linear equations for the unknown ordinates .gj

The kernel functionslk( ., x) in the integral equations that

we presently -wish to -solve all have the property that, for the .elongated

bodies of most practical interest, they are small except in the neigh-

borhood of x ' .. Although this property is desirable for obtaining."

approximate solutions of the integral equations, as will be shown, it

appears to make it necessary to -use a. quadrature formula of very high %M order in order to obtain an accurate representation of the Integral.

An essential feature of the proposed procedure is-that it Is possible

I to modify these equations so as to avoid this characteristic of the a.

3 kernels, so that the resulting integrals can be represented accurately4 by quadrature formulas of much lower. order. For this purpose, (51) in
Swritten "in the form

W (X k=)X)J +(X +'fM _ (3

-. , - W



vhere g'Q)* den~otes the derivative of g(Q). i4d will assume that the

derivative g' at x i can be expreosed.in terms of the values of-

tefunction 9., 92.9 ... at x,, x., . x by means of P_ n-m-aerlcal

differentiation formula of the form

JSince the inerand of the first integral in (55) .vanishes •

when x - ,its peaking pzvpperty has been eliminated, although it
appears that the difficulty has simply been transferred to the other

""Integrals occurring in theequation. If it is necessary to employ a

quadrature formula to evaluate thete latter integrals, this will be

accomplished by writing

W4q 1~ 4 1,Q! (i - ;(. -  Li 1. X) - V'(I, )1. .X ',

I . where k'(j,x) is an auxiliary matrIx to be selected such that

k(xx) -kl(xx), and II(I) f'k1(,x)d. andJt()

are integrable in terms of known functions. It is clear then that it

would' be possible to evaluate the first integrals on'the right of (55)

-jby a quadrature formula of low order. It .iril be seen that the Inte-

j 'grals of two of the four kernels derived above can be expressed in

terms of the integrals .of the other two, so that only two such auxiliar

.I: kernels k'( ,Jx) need to be found.

Gauss's quadrature formula is a convenient and accurate

_4

[
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mcto of evaluatnS these "integraTs. The for7,ula way be expressed

in tie form

vhire the Y. .• zeros o.the Legendrep lopyimi8 ofdcree 1

Snd tIme! Rj are vetghting factors. The values of x and R have been

Sta'bulatec [9) 'for. values of N from 1 tQ 16. The va3.uc .for N =13.

Table I

Absciesae and v ighting factors for Cauns's quadrature fonmxla

N'=3.1 11=16
ivX iiR i  ± . xiii
1 - -0.97822866 .005S66857. . -0.98940095 0.02715246
2 -0=88706260 0.12558037 2 --0.94457502 0.06225352

* -0 ;7301,201 0.18629021 3 -0.86563120 0.09515851
4 -0.51909S13 0.23319376 4 -0.75540441 0.12462897
'5 -0.26954316 0.26280454 5. -0.61787624 0.14959599
6 0 -..27?92509 6" -0.45601678 0.16915652'*
7 0.26954'616 0.26280454 7 -0.28160355 0.18260342
8 0.51909613 0.23319376 B -0.0950125 0.1894061

9 ,0.73015201. 0.18629021 9. '0.09501251 0.18945061
10 0.88106250 0.12558037 " 10 0.28160355 0.18260342
11 0.97822866 0.05566857 i 0.45801678 0,169156521

12 0.61787624 0.14959599
13 -0.75540441 0.12462897
i.'14 0.86563120 0.09515851
15 0.94457502 0.0622535216 0.98940093 0.027

r

iAplyng Gauss'qadrature forma ari (54) and (55) in (53),

S _ _ _ _obtain"

f, hi" .i +I s;L'+ Ji T.
, ; : o t 't,=:- • ": iI, =Z (,), ' ,(57),
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If the (qiadraturc formula is of low order, this set of e4uations can

be solved exactly for the 'alues or Cj. It. appears to-be preferable,

however, for reksons already discussed in the Introduction, to solve

integral equations of the first kind by successive approximations, as

will be illustrated in a subsequent section, ,

An approximate solution of (51) may b1e d&riv~d ae follows.-

Since k( x) peaks sharply in the neihborhood of x ' and ±g i " '

elsewhere, and g~)vrien vcryi little from g~) a ~ttis regionl in

vhic-h the value of the •integriAl is printipally d6termined, only i

cr all -error would be introduced if g(x)- were replaced by g(h) in (51)..

Tils gives

-4 , whence we obtain he first apprbximation

*rcx~ .(59)

• •jWe- can dow define a first error XSnetion

which, by (51 may also be wi-ttten in the form

Since the kernel is the same as in (51), an -approximite solution of (60),

Aindicated by tile sane argument as vao used to justify (59), is

SW - 1(x) (x)

IIor, fro (6O),

- ,

~if



The forcroinj process can be continuci successively if we define.

'Vhich may be -.rttou as the. intggrai eato

- an appr4xrlxate soldtion of which "Is

C-4

oHence we obtain

or) -by (57),)~

. .. +. , =.. . --  ,L -( )

the desired iteration formula. This last result may also be inter-

p reted as an iteration formula for solving the set of linear equations

I (57). In solving a problem the iteration should certainly cease when

the E of largest magnitude begins to increase with n.

It is now clear from ,(57) that in 6rder to solve an integral

equation of the first kin, by the'iterative procedure of (64) it is

first necessary to evaluate I, and J Methods of accomplishing this.

for the five integral equations/derived above are treated inL the

following sections.

s i
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A. jW-unatric flow about a body of mvolution

The velocity along the body is to be found as the solution

of (15) In vhich -we my take

.1 X 0, AU,~ 00: -(c -2, (65)
f i , .

SIn order to express (16) in the 'form (6A)' it ii; necessary to evaluate"

2 i.". "the quantities.

This vill be done in. two different'vays.

The basis of the first method is the observation t at the

exact solution of (6s) for a prolate spheroid of eccentricity e is

bhee
' This. gGesto as .the choice o£C the auxiliary kernel "

[ Here rP( ,x)represents the proilate spheroid, the major axis of which

extends Irom x m -i to x - +l and which intersects the given bbdy at

x = }. This spheroid has -the eccentricity

pri -b -b(68)
V Vc obtain then from (65) and (66) -

-1- X L ~ ( L)~ A , A A e (Xi)] (69)

-. -" Furthermore, by direct integration, we can obtain

,3&. L, 2- + e



vThen I and J can be obtfiined fromi (r)..

she se ud nt.a
- consists of employing the transp.ose of the.

kernel (J,,) as the a .xiliary kernel: -iz) + W (-, (7

k_______ ((7)3)XV A,+A

FI, 
0) /L t + ----- f(5

whence I and J can be o(btained. The latter method has -the advantage

- of ayoidinr the .calculation of an additional iatrix, but 
it is less

06cufate than the former method ~noar the erid of -the body.

B. Transverse flow bout a; bod of revolution

i{.,i - to Let us talke g(x) .-uo and f(x) -'4 iu,(2.)3 Then ,e need:

-to eva luate

- = v_ ' 7 [ 3JL' + 3,(x- G(X)J1.

AT.(if IL- 2~ 3 .jJ-4 a (X - G -(x)] J x

" I d,"2ib-here G(x *-I '(r 2 )- But frcmu the i3entity

, we-obtain .

T- (q) (74)

" :( .

, t'.-*

ill ~j
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Purthermore, subtracting (26) from (29) yields .
;rl:" (.;- ') dX - .-

where, fro (57)',

(.. -Y) G- W ., .. e.(75)
Since also, fra (-74),

I oo f' xk~(~xd XkX.,X)"

wa obtain

Thus, by (74);'(75) and (76), I and J are.expreased very aimply in
! terms of I1 -and "

dn order to determine the tangential components of theugh

this derivative can be "obtained graphically from the values of .u2Q(x),a

nunierici1 differentiation forimula, derived in "Appendix .i, is available

vhen the vA~lues of u2 are given at the abscissae of the Qauss quadrature

Torua xaplteepeso fo U i (22) In terms o h

d matrix tabulated for N la in Appendix 1, is'di.

, C. 6 C 17t a,,AU 2  x - (77)

, C. Rotational motion of a body of. revolution

S " renIn (9) we may takee ut

f.)~ ~ ~ ~i =C-+x -€ - -. C€ k'"l a

Then the kernel, and consequehtly the corresponding matrix hi. are the

same as for transverse flowv. It remains only to evaluate fi A fxi)

'

il V
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-which is ac~omplitshed, by (57), by writing it In the forn~' ( ., 7) ,r

The meridional velocity component, -ihich by (30) requires the C-

evaluation 9f d(r,5)/d, may be obtained from (24) anti the 5olutLion of''! 11 ". . .. . (29) by applying thenumerical differentiation '.procedatre ofAeaj-% 1. -. ,

i . D. Longitudinal f!ov about a syrnetrica!_ two-aifmenaicnal ffoe

In (38) ve-lrwiy tale "

* In order to reduce the integral equation to -the' form. of -(57) 'e -need

.. to evaluate E 3() and Jl(j). As, for the axisymbric :ase two methods
{,of accomplishing this will, b e preasanted. "":

- " , . -(79)
(X +-

there is the ellipse which parses th'ough the end points of the body

and intersects it at x , as deined in (67) and (68). The exact

solution of (38) for this ellipse is k
Ulf,, (, b) c . (80)

Hence we have .

-.. r'C C / b--- (1

Also direct integration yield "

r7rbt

-32;
, i
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44'4.444.A.'Ailt - .4 kt.%t44 4

*l~.

QtI can then be obtained frOM (55)..-- .

In the alternative *nethod. the auxiliary Izerkiel i a the trannpose

-ofI the Given 'one~ Then

4+ 4. 4 .4

-aneT anl J, gan be obtained. AS in the axiflyinietric case, theR

. latter method avoids the cilculxtioii or the additional matrix, but it

is less accurate than the i'oriier -,method near the ends of' the profile.

E.. flotation of' a syM, trical twb-dit'meional f'orm-

In(42) we z ay tale44

+ A;

-- SIX

C')

or. trom ~ 4.~2cj r ")I ~)) e, re (84 txd4),

Als ___av

4.44. .-.-- -- 4---- 44~4~~4 - .,-

.4-.~R Ax---~41

;c~ I'



I * But

X., ,1 + il&ip -,rm ofs
Iaely it~ is seenr that T(Q) is algo~ex roeaible in iem TQt)

~ IWe have'.
-~~~i (I .4m W 1 .~ .87)

Thh t4lnential- tomponlant of the volocity is noQw given by

Sun4.f Pr~ocedures fodr Solving I-nteal Equations

1. Gnri~al a: Ly t-

5Ci __ __ _

~~~ hq 3q),C) fl;x)d ~
-I.

s,,) +it-q J

ve.



B2 lodloo of Rbvo3.ution

- a)' Axial flow

RI p CRi xj: + ni,~

A1  t3[ze~- b2I.,~ .~i~jy.8rf eL -(z+ b,2)1. 5 J

Ie -- b -t .r T A, _EL_

-t 
- TE L

~ Iib) Transverse flow

[R 3 A___j-YZ

3. 5 .oDrnnina o

J?~ rr~ b5'. j-e

C)..Rot--tion ~ ~ .1. -;fo rn



b) Rotation -37-

47 ___I_ ,

. . . ,,

. JT +- ,X 'i:zJ.-+Gi

. 4. hort-cut procedures

If an automatic digital computer is not available,

su*ficient accuracy Tor most purposq; may be-obtained with:the.

: folloving'brlefer procedures:

.a) T,_ke for the corrected matrix

c)thirh N t1 h" Jisbigue

Consequently it woi!a"no r be necessary to computer 4  and for a.4

f[-. of the integral equations." "

) Use te transpose of thatith these s the auxill inry ml

to obtain I 1j by neanG of (72), except for i I or N.. Obta#x If, and

If, by rucanc oXf the more accurate proedure, uasing the ellipse aux~liay

~matrix, summarized .above.

c) T.Lhe N 11l, rather than"-the value N i 6 which is being used

t in prorramming the problem for an automatic computer.

It Is 6stimated that, with these short cuts, the resulting

-"labor is only one fifth of that of the complete procedure. The consequent

loss in a-ccuracY can be judLed from an illustrative problem which is

Ssolved in both ays in the following section.

i•* .-

*Y~iI _____

;'-.**.
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I Aplicatloa

The mthod of slving the various intcgia. equations encountered

above, applyIp the Gauss 16-point quadrature formula vith the 'ellipe'

; correction, and solving the resulting sets of iinear equations by iteration,

has been progrs=d. for the IBM 650 computer. Two programs, one for'bodies

* of revolution, the oihev for symmetric profiles, are presented in Appendix 2.

- A test of the procedures was given by.applicatiqn to the form

r= 41- or y2-041 ) %
V'ich is shown in Fig. 3. Because of the limited capacity of .the canputer,

"certain preliminary calculatioins are made by hand, as :is illustrated in

- Table 2 for this form. These data are then introduced into the cot~puter

which operates on them t6" obtain the various matrices" for the difterent

motions and solves the-resulting sets of l4near eqaations. The solutions

I a given in Table .

, The subsequent -calculations :for :obtainihg the solutions for

transverse motion add circulation for a two-dimensional form and for "

combining solutions and odbtaining pressure distributions have not been

progrmed for this computer. For example, the pressure distribution on

a body oX revolution in steady motion at an angle of yaw- ovould be obtained

- fro the fornala

-..

'Here Vs1 and U29 are, known if the integral equations have been solved,

and (ru ) my be obtained from the numerical differentiation formula

(54). Thus the pressure coefficient is given-as 'a function of x and 9.

w8

- -7-*~
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Fnge n the motion is unsteady, the pressute deends upon the in
J•rate of change of the volo izty potential, so tha the instantaneous state

Sof."motion oes n suffice to mke pressures determinate Apratecal

i application, in which the-various potential flow solutions haove been co.-

Sbiped for a bocdy of revolution m~neuverlng .n ar ,bitrary trajectory, i& :

I given 1-a VJS Report No. 987. (i0].

When a computer is not available, it has been reconr~cued that

•several short .cuts be applied, althoug at some sacrifice in accuracy..'

-There are illustrated on the same, body in Tables 4, 5 -and 6 for thi case L

iof axiwymaetric flaw and, comared vith the machine- computed retults izi

Figue 4. Also shown,'in thisfigure are the results obtained 1by Kaplan'S

, . metod Ellb] "
A similar comparison is shown in .Figue 5.Tor the two-dimensional

",form in longitudinal flbw. The pressure aistr;1bution qbtained from the

values in Table 3 are here compared with--he results from Theodorasn's

method t12]..

In order to -try the procedures for a two-dmensionq. profile

vith a sbarp trailing edge, f~r whidh the Kutta condition must be applied,

a third set of calculations were performed for the Joukows*y foil shown

in Figure 3. This was derived from the circle of radius a in the I-plane

by the transfofmation

1w which gives a symmetrical profile with a sharp trailing edge at x -1 and

a' rounded: leading edge at x = +1. The equations of the profile in Para-

f "metric form are

rl

' "|- " . . .%
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"" " " ' J- ['I+ (-zo2 a . t e-,. ]

2a D

4 und he Ktacndto ziu

J The te e shon in Fiure is for a t-I.n 1.b i
! I ."The exact potential-flow solutions for the foil "are .

: : O. A;, UzS = CL.

." 7r" (2 a-,) 0 "

-q . au +z) - C-+ (2 -a) ],

em the Kutta 'condition dives

!° ' L  " :' I" -'.Hence -the resultan.% velocity ",)n the, bodyr 'is ,. . ,"'[

and the pressure distribution is given by

' ____ " - - ( IX)
where ci - arctan V/U.

The ,'elocities on the Joukowsky profile in 'longitudinal flow, ,

j obtained by solving the integral equation with the aid of the 13M 656.

are given in Table 7. The subsequent calculations in this table illus-

trate the procedu=3 for deriving the velocity and pressure distribution

when the body is .a-I an angle of attack; 10 degrees 'was assumed in the

present case. The pressure distributions are compared in FIGure 6.



Table 2 - relimra Calculations Eor Mt 0 'rdcram

. . , or r 0.01(e-x')

2 2

1 -0.989,009, 0.077483091 J 4.59697158
- 2 -0.9457502 0.006157598 0.067421647 1.55723248

3 -O.86565120 0.017540939 .0 J.,.15550571:
..4 -0.75540441 0..026674990 03484865 1.0408550

0 - 004408560

5. -0.61787624 0.034170034 0.018870981 1.01042182

6 '-0.45801671 0.038239704 0.0076865976. 1.00154509
I. •. I

7 -0..28160355 009457 0.0017865055' 0002

8 -0.09501251 0.039996740 0.0000686171 1.00000012

K9 0.09501251 0.039996740 -9.006o86171 ' 1.00000012

S.1-10 0.28160355 0 0.039748457 -0.0017865055 .10008 029

11 0.45801678 *0.038239704 -0.0076865976- 1.00154,509

12 0.61787624, 0.034170034 -0.018870981 1.0.1042182

13 .0.755410441 0.026974990 -0'.03448,-1865 I.Q408550

14 0.86565120 0.017540939 -0.051890600 1.15350571

15 0.94457502 0.008157508 .-0.067421617 1.55723248-

,16 0.989 10093 0.001669079 -Q.077.83091 4.5969713J8

2 
G

*see i=li+9 3 -

I

4 777j



Table 3 - so iyiz"O inlalrz& ecjat oins for forrm

r2 or y =.(-x)

I 'Bo3 r rOvolution Two-dimensional

-U set i4,+. sec

",1 '1170939 1.776103 -161128"5 i;389427. -2.659327

.2 1..155112 1.7871.06 z1,551686 .1.368001 -2.72±678

" 1.141836 1.801656 -1.439410 i.41782" -2.785120

•"4 1.118176 1.825m18 -1I.27977"5 1.301883 -2,9038-59.

5 1 .091943 1.853961 --.069772 1.256147 -3.O042-81 .,.

6 1.06-1840 "1.885408 -0.811441 1.20)9526 -3.1990W6 .

7 1.041513 1.914041 -0.509042 1.169843 -3.30109.

1 8 1.027651 1.931756 -0.17 39 1.146485 -3.426750

9 1.027651 1.931757 0.173839 1.146485 -3.426730

4 10 1.041513 1.91404L 0.509042 1.169843 -3.340110

1 1 1.064810 2.885409 0.811441 ].209526 - -.3.199096

1, "1.091943 1.85396i 1.069771 1.256147 -5.042681

13 1.118176 1.825417 1.279773 1.301882 -2.903859

I 14 1.141836. 1.801657 1.439411 1.341782 -2.783121

I 15 1.155113 1.787105 1.551625 1.368001 -2.721677

I 18 1.170939 1.776102 1.611283 1.389427 -2.659328

• . .-.. .-."V.'.

1W¢;



0

.TZS= t - ort-cut procedure for a:-fla7 essure distributon

Preliminary calculations' 9. .033 242. , 56 -1829_Tfi~ ", 1- 4 +

- I J. , k ZRkI " " :--- .....- --:" - " ......... _ _ _ j- - T .i j.i,- + ..... [

1 0978229 I-0761801589 1.879658 .7

.887063 | .0152327 1 1.204706 1.6729 1.7847-68 1.696402 1.7613.081

- I +  .7o5 I.o086312 1.033870 1.842473 1.847705 1 1.85292 1.o,4885+
• , .,, - •I .

I+ " : *1 "• . " .''Il 1;590m96' .037956l, 1 o003376 l.92MMl ._9.88h X--03 1 .8586.21+o T
.25 . 1.00W62 1.952418- , 2.056 1.909790 .

6 0. .0400000 1.000000 .2 .05642, 2.081576 1.932235,

7 .26945. .0397891 1 1.000062 .952'4 . 2.013385 , 2.056013 1.90979 0 .

2: .," . £,

8 .519096 .0370956 1.003376 1.920372 1.928884 1.990636 1.858621

9 .73015Z -0286312 1.033070 ' 1.842473 1.847705 1.885292 1.804885

,1O .887065 0152327 1.20706 1.67292 1.784768 1.696402.1 1.761308

11 .78229 .00337124 2.663562 1.-82299& 1.80158 1.7656 .744926

2e - 07ejl 4-- et + Z,3 . . ] .

X;~i~)-+ .j *(' x + ,/Z.JI/Z

Sobtained from Values in Table 6. {
. '41++ N. 'R hjj.. j, •to

RS A 0.080- (xjt)

for 1. 1, •3.
, .

• 1: JL



Table !Z- Short-cut procedure for axial-flov pressure distribution.|4

on body 'r ( 0.04(1-x )

Calculation oi' matrix h for solution of linear equations by Iteoration

iJ +

*. . . R k R )z k R k kjV

1 .055669 117.222847 .958779.95779 4. 216571 .4732 529517
2. .1550 2.669813 .535275 .148626 8.05328 1.017190 1.017/90
3 .18690 .2038571 .037973 013 7 1.914577 .556667 .21043

3 .2 0919 3 .030121 .007961 G0iG99 .60254 .00760 .03 720
5 1 .26280 .00927s .002,694 .000522 .60971 .0602 .007657

5 .22125 .00 6324 .000978 .000199,. o02o0 3 1007870 .5266
7 .262805 01 .015 9 . . 00096 .0096816 .00?-5449 .00.16

7 .233194 .0010020 .00023 .000066 .0054159 .00126 .000680
9 .186290 6 .0036750 .000!26 6 00008 .00 5702 .000665 .00048

.0.15 0 .00187 . 00167 9 .00208 .00040 .00o042

0 .055669 .0004396 ... o0012 . 0 2975 .0-5518 .0010 .o00029 ,i ="
ji ' .:"R ki " Riji 4"ji Ri i

3 1. 057557 .058882 .1.96975 .300162 .016731 .0700862 2.329880. .?9 2586 .4A,4033 .517792 .065026 .12?07463 5.90993 3 1.100961 1.100961 -1.590250 •.296M - .570837 i

.
4 1.446400 .55 7?92,, .269450 5.19-q)052 1.210755 1.210755 '5 2421879 .063648 .0N5117 &.835 .511002 • 275961

•6 0680019 .018559 .012668 .2185533 .059649 .0509657 .027758 .007221 .005118 .0693567 018227 .016174-
8 .01,42906 .00532 .002662 .0-015099 007348 .0075d8
9 .0090120 ..001679 .001679 .0183685 .005t-22 .004283

3.0 .0066595 •.000836 .001M .01'29751 .001629 .003026 .. 1 .0056588 .000315 .001054 .0107816 .000600 .002514

'Ir2

.-.- l*--~.',, . .-. , . -



Table 5 - -continud.

Lkk RV, ii Rin..

V1  .09967, 0 a. . 026195 .04 18 . 3 0103 G7
2 .145504 -018277 .058249 i0z3980 .006681 I°014519

"3 .3144701 .058583 .082644 , .0921912 .01I7"17 .025161
S4!1.2.1942 9 .284361* .320672 .25ZS5/8 ,05418-4-, "065"U!5

r5 5.013236 1.517507 1.517503 1.058579 .278206. .283913
6 1.055965 .288199 .277513 5.000000 1.36625 .1..,6_25
7 .2096917 .055108 4055108 ,1.058579 .2782 .288915
8 1 .0739388 .0172,2 .01941 .15232350 .05618,.& .063U15'
9 .0375700 . .006999 .009874 .0921912 .017174 .025161

10 .024M157 .003091 .0064,69 .0531980 .006681 .014519

11 .0197247 .001098 .005104 .0,0188 .00227 .010967

1 7 1 8

"Rji jii . kii . jk-i ikji 1

1 .01972417 .001098 .005181 .0107816 .000600 .002514
2 .0246157 .003091 .006469 .0129751 .00162.9 i .005026
3 .0375700 .006999 .009874 .0183685 .003422 I .004283
A- .0759388 .017242 .019431 .0315099 .00735 .075-1
5 .2096917 .055108. .055108 .0693567 .018227 .016174.1
6 1.055965 .28199 .277513 - .218553 .059649 ' .050965 k
7 5.013236 1:317503 1.317503 1.183395 .311002 .275961 ,*

8 1.21949 .28d-64 .3 20472 5.192052 1.210755 ? 1.21075511
9 3144701. .058585 082641 P 1.590250 .2962,18 .370857
10 .1455404 .018277 .05829 .5177928 .065024 .1207,16

10 59 .026195 Z.5462 .0167 .31 070086

1 0 000315 .001054 .0025318 .o o

2 .0066595 .00086 .001241 .0027082 -.000540, '000340
. 0 . 090120 .001679 .001679 .0035702 .000665 .000t48"
4 .0142906 .003S32 .002662 .0054159 .001265 .000680
5 .0274758 .007221 .005118 .0096816 .002544 .001216
6 .0680019 .018559 -012668 .0212043 .005787 .00266,
7 .2421879 .063648, .045117 .0609713 .016024 007657
8 1.466400 .337292 . .269450 .2605548 .060760 .052720
9 5.909933 1.100961 1.100961 1.914577 -.356667 .240433'

10 2.329880 .292586 .434033 8.120328 I 1.017490 1.0174901
1 1. 1.057357 1.058862 196975 4.21657l 254732 L529517

1,4C
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Tablc 6 - Ohort-cuL i,'a're for r 0.0.. ( )-;,*)
Solution of cquablono; )rcu'urc ulncrilbuti(n

LI Pi/( u.L) = l -. con

n+l,i = ni + 1:W ± ni I i j n j

J Cj Iz zj 'zj Zij cj % ~~

5i1.04610 .0186 1.1504021- .00164 1.0 -. 00016 1.1045 0.0482
6 1.035520 .0112 1.14864 .00304 1.02160 .0002 1.0260 -. 05
7 1.10104 .00690 1.12500 .00118 1.01161 .00010 1.11628 -. 20526,
4 1.076066 .00084 1.07690 .00014 1.07704 .00004 1.07708 -. 15620
5 1.0477_36 -.00402 1.04262 -.00088 1.04174 -.00016 1 .04Z358 -.08182;
6 1.035072 -. 00692 1.02816 -. 00152 1.02G6 -. 00024 1.02660 -. 05391
7 1.047236 -.00462 1.04262 -.00088 1.06174 -.00016 1.041.58 -.08482
8 1.076066 .000861 1,07690 .0001-A 1.07704 .000041 1.07708 -.15620
9 1.108104 .00690 1.11500 .00118 1.11618 .00010 1.11628 -. 20526

10 1.135120 .01128 1.1 964 .00164 1.15168 .0009 1.15260 -. 1075
10 1.146150 .01286 1.15064 .00141,1.1668 -. 0009 1.16042 . 4 0

Table 7 - Velocity and )rcssurC distributions for a Jouzows:iq foil

,x y 13 m U, sec Y I St 0 .Ui1RW-c,3tcdpt K= io[J ~ ~ ~ ~ ~ ~~iII T.c.c o~ptao~t '"~ pe lower
k -.0894 .:0003 8495 .8365j .2810 SW .506 .09 .0621 .3179 .2873

2 -. 0446 .0031 .850 .0519 .:2692 .2792 .0672 .1438 .3257 .r38
5 -. 8656 .0114 .071. .8706 2,204 .2599 .1157 .2285 .3213 .2027

-.7554 .0272 .9108 .910 .1911 .1012 .2143 .3181 .3010 .1250
5 -.6179 .051 .9574 .9659 .1!38 .1018 .3627 .4150 .2617 .0102
6 -. 4530 .0820 1.0165 1.0196 .0064 .0002 .5004 .5236 .2058 -. 194
7 -.2316 .. 172 1.0015 1.0805 -. 1258 -. 1237 .6855 .6451 .1424 -.3544
8 -.0950 .1526 1.1467 1.1441'-.2738 -. 2681 .895d .7879 .0840 -. 6025
9 .0950 .1836 1.2088 1.2071' -. 4516 -. 4277 1.1174 .9589 .0413 -. 0977
10 .2016 .2056 1.2670 1.2666 -. 5929 -.5918 1.3483 1.1704 .02W -1.2483
11 .4580 .2149 1.3200 1.3202 -.7422 -.7426 1.5765 14440 o.0612 -1.6506
112 .6179 .2000 1.3662 1.3662' -.8508 -.8508 1.7913 1.8189 .1717 -2.1310
115 .7554 .1874 1.4039 1.4038 -.8675 -.8673 1.9818 2.3765 .3M7 -. ,6471
:14 .8656 ..1509 1.4313 1.4326 .7011 -. o7042 2.1381 5.3246 .7151 -3.1418
i5 .946 .1026 1.4503 1.4523 -. 2160 -. 2194 2.2518 5.2762 .9943 -3.394
16 .9894 .0463, 1.4651 1.4632, .618 :6199 2.3171 12.1974 .51061:2.6690

C,. l,3  ' -3 9,, 2,.,.

T ~ I U10 L) -WxJ

III[o 
hSi x xf



P ~a.-xa for Wumeirical Differeatiatti and Lthterpolaton

*Let us suppose that i Gauss quadrature formula of' order 11

o1 a !;et, of nwir gx) here the x. are the zerom of the Legindrp

at h Kodtto 2 ysm guciven ;fntin Sic: tIsdsie

jlioxz formula .13)-frh poiynorilei through the points (x,, hi is

-;. -J P P

O ~er the primc- denotes -differentiatI'on -ith respect to tLhe- argum~nt.

Differentilating (91) yields

t'c (x L .) P'(X) PO4 (X)h
a=I (xz 3 )2 P(xj)

or, putting x xand i4 h (x, we obtaiji

where

.a~J (Xjxj)P~ (XI) '(3

A~pif%



aL (94)

.I n, by application of Ltl~sptalts rule, .q "."ij ..

But thLegend-e polynomials satisl- the equatio"e

•"(, ) x') +.[ P.x) - P , ' -(x))

XI) " x .+

From these eauations we obtain 1" "

PN. (96)

* 1;

-i ..

a,, ."(97)LL

Thus -it is seen that the derivatives h are given as linear
icombinations-of "the'ordinates h,. The diaCgonal elements are given by

(97) ard -the remaining terms (93) can be computed from tables of the

LeedepoIlrnc~cial of degree N-1 according to (95). The matrix a

for N = 16 Is given-in Table 8.

An interestind observftlon is UAt if h =1 then.we must

haveh = 0. Hence a 0. This shows that the matiix is I

singular..

Ak

__ _ - - Vi

.. -.- I- -
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The intcrwpolation fon=lr A (91) also furnishes an

aritmticl ~z,1kntUO, latUMISin-(47).-

We obtain

I C' hi, ci  Ia;: I, 98
, 

P~,~~,(r P=xXz

SI.

The c6efficients C have the properties

(99)

._ 4-.I R; . Ci = CH.+, . *

where the R are the weighting factors in Ga~ss's quadrature formula

(S6).' Also we hAve from (99) .

"J' h(x)4X = '/() - N4+/,:-j t ., "

Y.i j X

Values of the matrix C for N 16.are Liven in Table 9 for i =, ,

" 8, and j = 1, 2, 1.. 16; The values for I .9, 10,; 16.ay be

obtained from the tabulated values by ~inans of (99). An alternative,

procedure, which aoids the necessity of"computing these additional

numbers, is the following one:

X " .
-.( (101)

It is seen that Eqs. (100) furnish similar expressions for evaluatin8

f1h(x)dx.

II

.. .. . • -.............-.... -. "..... - -., - -
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AnpcndJ " 2

ProGram for the IDM 650 Automatic Computer

by

Matilde McaGno

The IB14 650 is a computer of moderate speed and a storage

ca-pacity of 2000 words which may serve as numbers or instructions.

Because of its limited capacity, each of the followinv two programs

was subdivided into two parts. The continuity of a program is not

disturbed, however, since the second part is read in automatically

after the first is finished. The programs are written in the form

'of FORTRAN statements, a semi-mathematical language, which are trans-

lated by the computer into a machine-lanGuage program.

The first program solves the three integral equations for

axial, transvcrse and rotational wutions of a body of revolution.

- I The required input data are the slopes and ordinates oT the body at

16 specified points. In the first part o£ this program a "corrected"

matrix for a::ial flow is computed and various combinations of the

elements of this ratri::, needed for all three problems, are obtained.

In the 4econd part a system of linear equations, having the matrix

computed in the first part, is solved by iteration to give the solu-

tion for axial flow. Then a second matrix, which serves for both the

transverse and rotational cases, is derived and used to obtain aolu-

tions (also by solving linear equations by iteration) for the latter

two cases.

I~OC ~S

!.'i
- -- - - - - - - - - - - -



The occond program solvcs the two intogral equtttiont lo'

l ongitudinal and rotational motion of a symmetric two-dimcnslonat

form. Again the first Dart cf the program deriver only quanltieo

associated with the matrix for longitudinal motion. In the second

part the matrix for rotational motion is obtaLned and solutions for

the two cases are computed by solving sets of linear equations by

iteration.

A "Pause" statement is included to permit the program to

be stopped after a solution for a particular mode of motion has been

obtained. Two subroutines are required, the square-root subroutine

for both programs and the natural-log subroutine for the body of

revolution.

The times required for processing the programs on the IBM

650 at the State University of Iowa (which is presently not equipped

with "floating point") are as follows:

Body of revolution (3 integral equations) 100 minutes

Two-dimensioal form (2 integral equations) 75 minutes



4:~e
4 Potentitd1 Flow About A Bolody Of' Hlvolutidn

B 1(16), S1(16), S2(16), A(16), B1(16), T(16)

1 IWAD, X,Y, R

DO 5 = 11

2 S(xi. - X'I) ** 2

DO 8 1. = 1, 16ciJ±()*Y/qm(D+y)r)

4 DO 6 = 1,1

A E (I ) *(2.*E -

6 8 11(I) -H()*6* -/Sa( + Y] -3

ro 8 1.- 1,16

A2(I) =0.En IDO 11 1 =1,16'

Si(I) =siCI) + x(I)*13(I)/16. - V*(X(J) - X(I)) -

1.S2(I) S2(1) + A(I)/16. - V

DO. D14 1 1, 16



la 'DO 14 J 1,1

4.14 c(I,3T) l(T* J

DO 17 J 12

- ~z(I) -zC') +vQx(j) x(i))

.9 S(I) S(I.Y+ S2(I) -

- .18 c(I,l). C(I,I) + saCI),.

DO D0 -= 1,16'

21Z(I) 2.

STOP o --

] I - odj~o Revolution -Part 2

j DIIMESION -Same as in Part 1

24 DO026 1 1,16

25 A(l) =Z(I)/S(T)'H AP A(I)'K9

4~ 7-7-



--u

2 'D 31. 1 1,16 1
28 sl(x)oo -0-0

29. D =Z(I)/i6.*

osi(l),= Sl(I) + D-

* n~i) A(l) -.E

BP =B(i)"

31. PUNIIH, I, BPl, E

52 Si(i) =0.0 ***i

Do3 J'b1,16 -V33 D =Z(I)/16

3t. bl(I) .-) + D - C(I,J)*.B(JY -

A(l) +.(I +E

KP = KA+ 1

IF( 35 6)fH 27A,5, 3

* I 36 COT IU .

* - PAUSE -

IP(K T5) 50, 51' 53 -

Do059 1.,16
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DO030 J 1,16

38 S2(I)~ S2(x) + C(I,JT)*A(J)

. n ~~(IH) 4 z:

k~~39 - :T(l) ts4.*X(l) + .*sG2y - i.;.
E z-D - 3.* i(J)+3.(j)XI*A)

it~ I() . .4 ~gjY(J)/S'ff(D**5)

~ S2(.) o.0'

-DO .45 J 1,16 ®
4,114 V -C(I,J)rI

~1 Si(.I) SI(I) 4: 1(I)/16. -V*(X(J) -~)

-I46 S2(I) S'fT') + -)/6 V

46 C(T,I) = o(I,I) + s2(1)'

*DO49 1 1,16

47. READ, w

48 ')=c(IJ) + 1j*il

49 ). = 4..

GTO24

51 DiO52 1 1,16



, ,' 
58 .. . "

' . ,T0.2 
4C , 

.

* . 52 Z(I) T?(I)

*53 CO14Tfl1VE-

STOP . ..

. • Potential Flow aoout A" SMctzric Two-Dimcnsional Form

Part I

v . • 51<.6S), s?(16), A(U6), B(16) * . . . .

*1 -READ, X, Y;R V~

P 3 3.1415927 '* . - 2

*DO 3 I =116
- s(I)I. -x(I)** " .

i)r (D O 6 1I ) 1,16 .
- *

4 'D 6 .>1,16 .-

< (x(J) - ** 2 2
6 C(I,) -R(J)*SWVF(YE)/(D + YE)

DOB8 1 =1,16

* 7 U s "iT(H(l ))

A(I) r/(l. + u)
8 -" P.*u/(a. , ,,

DO11 -l,16

9 sl(i).= 0.0 .

S2(i) .. o.0.',* I

~~DO 1 J W,16=

- --. 1 7
I1~~j 77



sJ )-B01 ~lk([A.rW~ - xW

%* *. (l ;;1%T;2cT7 +* A(TTlr, -N

~1 K * i4~ C(I,J) - R(,T)iY(J)/D -.

*DO 18 u ,16

.16 ( - *.0 * . **1*

'DO18 J 1)16

v1 V =C(IJ)

zI1 -; -(I +. **~ - *

iO 21 1,16m

I- I,* +s2 I

hi - * -



ISTW-Dim~em~al form - Airt I

.11(16), si(iG), s?.(16); A(16s), B(10)

. 24 DO026 1 1,16

25 -A(I) =z(I)/S(I) ..

AP =A(!)

26 PIRICH, 1, AP

27 DO031.- 1,16

30 D = Z(I)/J6

50S* . 'S(If(I) D C(IJ)*,I(J)

A I B(Iy A(,) +B- -

31 -p!JrCH, I, tp, B

DO . )55 1 ,.

II * . .DO034 J1,1.6 .

33 D =z(x)/io6.134 Si(I). =sgII) + D - C(I,.)*B(J)J .(I) = (I)+ E
AP AMI

S5 MICXH, I, AP, E

IF(K - 6)27, 36, 36 -



DO I911,16'

.~ I' 37 P 3.141W927,7-

sg(.i) 0.0.

D 0 38 J. - ,16.

38 S2(1) =S2(1) + C(I,J)*f(J) .- I

* () H(I) - S2(1) + X(I)*(s(I) - P)

'4 ,39 Z(i) ='P*X(It) + 2.*S2(I)'-. -

-D I042 1=).,16 .

40 WD012 J I,16-

- .41 D e(X(.T) - + ..2

* E -D - 2.*Y(J)-**2 + 2.*(XCJ) - x(I))*A(J) ,-I.

-G R()* *. -)J)*

42 C(Ij) =E*G

DO '4D05 1 = 1,16

43 S*2(I) - 0.0 - . '1

44 .2(I) = S2(I) +.c(I,J) -

A5 C(1,1) = C(I,I) + S(I) - 82(I)

GO TO24

I .p
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